Name	Period	Date

WHOLE NUMBER MULTIPLICATION AND DIVISION (NBT1) Essentials Pre-Assessment Answer Key

1. Grace multiplied 7 • 9. Explain her strategy.

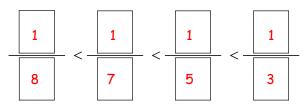
 $7(10) = 70 \rightarrow 7(1) = 7 \rightarrow 70 - 7 = 63 \rightarrow 7 \times 9 = 63$ She multiplied 7 by 10 and 7 by 1, then subtracted the products. This illustrates the distributive property: 7(10 - 1) = 7(10) - 7(1)

2. Find each product.

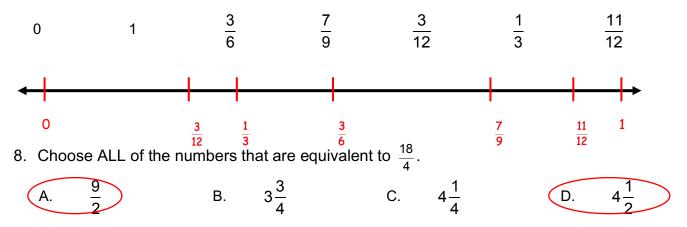
a.	6 • 8	b.	60 • 8	C.	60 • 80	d.	80 • 6
	48		480		4,800		480

3.	Multiply 18(121) using an area model. 2,178	4.	Divide 767 by 13 using the chunking method. 59

5. Compute each product using the standard algorithm.


a.	19 × 85	b. 5,670÷35
	1,615	162

Period _____


Date

FRACTION CONCEPTS AND EQUIVALENCE (FR1) Essentials Pre-Assessment Answer Key

6. Write inequalities to compare the unit fractions $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{7}$, and $\frac{1}{8}$.

7. Estimate the location of each number below on the number line.

- 9. A number has a numerator of 12 and is equivalent to $\frac{2}{3}$. What is its denominator? 18
- 10. Explain how to use common denominators to compare $\frac{2}{7}$ and $\frac{1}{3}$. A common denominator is 21. So the two fractions are equivalent to $\frac{6}{21}$ and $\frac{7}{21}$. $\frac{7}{21}$ is greater than $\frac{6}{21}$. Therefore, $\frac{1}{3}$ is greater than $\frac{2}{7}$.
- 11. Write each pair of fractions using a common denominator. Then circle the fraction in each pair with the greater value.

Date

FRACTION ADDITION AND SUBTRACTION (FR2) Essentials Pre-Assessment Answer Key

12. Use mental math to find the sum	12.Use	mental	math	to	find	the	sum.
-------------------------------------	--------	--------	------	----	------	-----	------

13. Without calculating, estimate each sum or difference.

a. $3\frac{1}{7}$	+ 2 <mark>1</mark> 11	Closer to 5 Closer to 6	b.	$4\frac{4}{5} - 3$	<u>1</u> 8	Closer to 1 Closer to 2
-------------------	--------------------------	----------------------------	----	--------------------	---------------	----------------------------

14. Find the following differences.

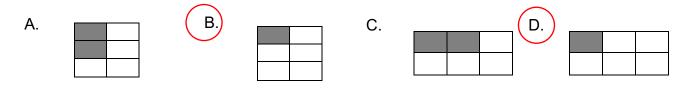
a. $\frac{11}{12} - \frac{3}{4}$	b. $6\frac{2}{5} - 4\frac{2}{3}$
$\frac{2}{12} = \frac{1}{6}$	1 <u>11</u> 15

15. Find the following sums.

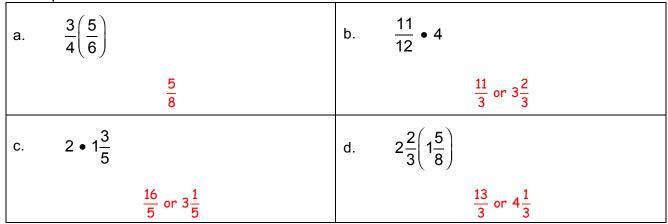
a. $\frac{5}{6} + \frac{1}{3}$	b. $4\frac{1}{4} + 2\frac{2}{3}$
$\frac{7}{6} = 1\frac{1}{6}$	6 <u>11</u> 12

16. Lucy is baking a cake that requires $4\frac{2}{3}$ cups of flour. She only has $2\frac{1}{4}$ cups of flour and wants to borrow some from her neighbor.

How much flour does she need from her neighbor?


 $2\frac{5}{12}$ cups of flour.

- 17. Ignatius added these proper fractions this way: $\frac{3}{4} + \frac{3}{5} = \frac{6}{9}$.
 - a. Explain why his result of $\frac{6}{9}$ does not make sense. One way: since $\frac{6}{9} = \frac{2}{3}$, and $\frac{2}{3}$ is less than $\frac{3}{4}$, this sum is too small. Another way: $\frac{3}{4}$ is only $\frac{1}{4}$ less than 1, and $\frac{3}{5}$ is greater than $\frac{1}{4}$. The sum must be greater than 1, but Ignatius' result is not.
 - b. Find the correct sum. Show work. $\frac{3}{4} \cdot \frac{5}{5} + \frac{3}{5} \cdot \frac{4}{4} = \frac{15}{20} + \frac{12}{20} = \frac{27}{20} \text{ or } 1\frac{7}{20}$


Name	Period	Date

FRACTION MULTIPLICATION AND DIVISION (FR3) Essentials Pre-Assessment Answer Key

18. Ervin was trying to create an area model to compute $\frac{1}{2} \times \frac{1}{3}$. Which of the area models below could he use to answer the question? Choose ALL that apply.

19. Compute.

20. Six advisory classes want to split $7\frac{1}{2}$ pizzas equally. How much pizza will each advisory class get? Use a division procedure or diagram to justify your answer.

$1\frac{1}{4}$ pizzas

21. Compute using any method.

a. $\frac{5}{8} \div \frac{1}{4}$	b. $3\frac{1}{2} \div 2\frac{1}{3}$
$\frac{5}{2}$ or $2\frac{1}{2}$	$\frac{3}{2}$ or $1\frac{1}{2}$

22. Tyler notices that dividing a number by $\frac{1}{2}$ gives the same result as multiplying the

number by 2. Critique Tyler's conjecture using supporting examples or counterexamples.

Explanations may vary. Tyler is correct. When you divide by one-half you are doubling the amount that you have.